square sequences

Squares are very powerful combinatorial principles introduced by Jensen. They hold in *L* for example.

The square principle for a cardinal κ , \Box_{κ} says that there is a sequence $\langle C_{\alpha} \mid \alpha < \kappa^{+} \text{ limit} \rangle$ such that C_{α} is club in α , $o.t.(C_{\alpha}) \leq \kappa$, and whenever $\beta \in C'_{\alpha}$ (that is a limit point of C_{α}) then $C_{\beta} = C_{\alpha} \cap \beta$. Jensen proved that if V = L then \Box_{κ} holds for all cardinals κ . To get the consistency of the negation of \Box_{κ} you need a Mahlo, for a regular κ , and much more for singular κ .

イロト 不得 トイヨト イヨト 二日

Theorem

(Todorcevic) PID implies for all cardinals $\kappa \neg \Box_{\kappa}$.

Todorcevic proof is based on his analysis of walks, and so we begin with their definitions.

3

A club system on a limit ordinal λ with uncountable cofinality is a sequence $C = \langle C_{\alpha} \mid \alpha \in \lambda \rangle$ such that for limit $\alpha < \lambda \ C_{\alpha}$ is a club (closed unbounded) subset of α , and $C_{\alpha} = \{\beta\}$ when $\alpha = \beta + 1$. We assume that 0 is always in C_{α} .

Definitions:

- C is coherent if whenever $\alpha \in \lim C_{\beta}$ we have $C_{\alpha} = C_{\beta} \cap \alpha$.
- C is "threadable" (or trivial) iff it can be extended to a λ + 1 coherent system. That is, there is a club C_λ in λ such that for every δ ∈ lim C_λ, C_δ = C_λ ∩ δ.
- Solution 3 □_κ sequence for a cardinal κ is a coherent club sequence (C_α | α < κ⁺) such that the order-type of each C_α is ≤ κ.
- Jensen's square \Box_{κ} is not threadable.

Theorem (Todorcevic)

PID implies that every coherent club system on an ordinal of uncountable cofinality is threadable. So there are no square \Box_{κ} sequences. (Jensen's square \Box_{κ} is not threadable.)

Definition of walks

Let $\langle C_{\alpha} \mid \alpha < \lambda \rangle$ be a club system on an ordinal λ with uncountable cofinality. For every $\alpha \leq \beta < \lambda$ we shall define $walk(\alpha, \beta) = \langle \beta_0, \dots, \beta_{n-1}$, and then define $\rho_2(\alpha, \beta) = n - 1$, by induction on β .

 $walk(\alpha, \alpha) = \langle \alpha \rangle$

Correspondingly $\rho(\alpha, \alpha) = 0$. For $\beta > \alpha$ we define:

 $walk(\alpha,\beta) = \langle \beta \rangle^{\frown} walk(\alpha,\min(C_{\beta} \setminus \alpha)).$

Correspondingly $\rho(\alpha, \beta) = 1 + \rho(\alpha, \min(C_{\beta} \setminus \alpha)).$

Finite differences

Lemma

If the club system $\langle C_{\alpha} \mid \alpha < \lambda \rangle$ is coherent, then for every $\alpha < \beta < \lambda$

$$\sup_{\xi < \alpha} |\rho(\xi, \alpha) - \rho(\xi, \beta)| < \infty.$$
(1)

Proof: by induction on β .

3. 3

• • • • • • • • • • • • •

The ideal I_C of a coherent sequence C

Let $C = \langle C_{\alpha} \mid \alpha \in \lambda \rangle$ (with λ of uncountable cofinality) be a coherent club system,

Definition

 $X \in I_C$ iff $X \subset \lambda$ is either finite or countable infinite and for some $\beta \ge \sup X$ we have that $\lim_{x \in X} \rho(x, \beta) = \infty$ (by this we mean that for every $n \in \omega$, for all but finitely many $x \in X$ we have $\rho(x, \beta) > n$.)

The Finite Difference Lemma implies that if $X \in I_C$ then actually for *every* $\beta \ge \sup X$ we have that $\rho(x, \beta)$ tends to infinity as $x \in X$.

When $cf \lambda > \aleph_0$, I_C is a *P*-ideal.

Proof. Suppose $A_i \in I_C$ for $i \in \omega$.

• Find one β so that $\lim_{x \in A_i} \rho(x, \beta) = \infty$.

э

When $cf\lambda > \aleph_0$, I_C is a *P*-ideal.

Proof. Suppose $A_i \in I_C$ for $i \in \omega$.

- **1** Find one β so that $\lim_{x \in A_i} \rho(x, \beta) = \infty$.
- 2 Define $A'_i = A_i \setminus \{x \in A_i \mid \rho(x, \beta) \le i\}$.

200

When $cf\lambda > \aleph_0$, I_C is a *P*-ideal.

Proof. Suppose $A_i \in I_C$ for $i \in \omega$.

- **1** Find one β so that $\lim_{x \in A_i} \rho(x, \beta) = \infty$.
- 2 Define $A'_i = A_i \setminus \{x \in A_i \mid \rho(x, \beta) \le i\}$.

3 Then
$$A = \bigcup_i A'_i \in I_C$$
.

200

Recall the PID statement.

If I is a P-ideal over a set S, then either

S is a countable union of sets that are out of *I* (i.e. orthogonal to *I*), or else

S contains an uncountable set that is inside I.

If C is a coherent club system over λ with cofinality $> \omega_1$, then the second alternative cannot hold for I_C . Namely there is no uncountable set inside I_C .

Proof. Say *X* is inside I_C . And of order-type ω_1 . As $cf(\lambda) > \omega_1$, can pick $\beta > \sup X$. But then there is some *n* and an infinite $X_0 \subset X$ such that $\rho(x,\beta) = n$ for all $x \in X_0$. Thus $X_0 \notin I_C$.

PID implies every club system is threadable

Theorem (Todorcevic)

Assume the PID. Assume $cf(\lambda) > \omega_1$. Every coherent club system over λ is threadable.

Proof. Consider the *P*-ideal I_C . The second alternative of the dichotomy does not hold. So λ is a countable union of sets out of I_C . So there is a set $A \subset \lambda$ that is cofinal in λ and is out of *A*. (No infinite subset of *A* is in I_C .)

PID implies every club system is threadable

Theorem (Todorcevic)

Assume the PID. Assume $cf(\lambda) > \omega_1$. Every coherent club system over λ is threadable.

Proof. Consider the *P*-ideal *I*_{*C*}. The second alternative of the dichotomy does not hold. So λ is a countable union of sets out of *I*_{*C*}. So there is a set $A \subset \lambda$ that is cofinal in λ and is out of *A*. (No infinite subset of *A* is in *I*_{*C*}.) So for every $\beta < \lambda$ there is $n(\beta) \in \omega$ such that if $\alpha \in A \cap \beta$ then $\rho(\alpha, \beta) \leq n(\beta)$.

PID implies every club system is threadable

Theorem (Todorcevic)

Assume the PID. Assume $cf(\lambda) > \omega_1$. Every coherent club system over λ is threadable.

Proof. Consider the *P*-ideal I_C . The second alternative of the dichotomy does not hold. So λ is a countable union of sets out of I_C . So there is a set $A \subset \lambda$ that is cofinal in λ and is out of *A*. (No infinite subset of *A* is in I_C .)

So for every $\beta < \lambda$ there is $n(\beta) \in \omega$ such that if $\alpha \in A \cap \beta$ then $\rho(\alpha, \beta) \leq n(\beta)$.

So there is *n* such that $n = n(\beta)$ for an unbounded set of β s in λ . Let *n* be minimal with this property.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

the proof continues

So we are at the following situation. *n* is minimal so that there is an unbounded set $B \subset \lambda$ such that for every $\beta \in B \ \forall \alpha \in A \cap \beta \ \rho(\alpha, \beta) \leq n$.

Say $\alpha < \lambda$ is em good if $\alpha \in S_{\aleph_0}^{\lambda}$ ($cf(\alpha) = \omega$) and for all $\beta \in B$ above α , $\alpha \in C'_{\beta}$. Let $G \subset \lambda$ be the set of good points.

- There is an unbounded in λ set of good points.
- Item 1 implies that the club system is threadable.

Let's check item 2. The point is that if $\alpha_1 < \alpha_2$ are good, then C_{α_1} is an initial segment of C_{α_2} and hence $\bigcup_{\alpha \text{ is good}} C_{\alpha}$ is a club of λ that threads the system C.

Here is an application due to Todorcevic of the Symmetric Dichotomy theorem.

Theorem

PFA implies that there no S-spaces. In fact, the simple dichotomy for \aleph_1 -generated ideals implies that there are no S-spaces.

A B F A B F

Proof. Recall the definition: An S-space is a regular, hereditarily separable, but not hereditarily Lindelof topological space. To prove that no such space exists (under the dichotomy), suppose that X is a regular topological space which is not hereditarily Lindelof and we shall prove that X is not hereditarily separable. Since X is not hereditarily Lindelof, X has a subspace $S = \{x_{\alpha} \mid \alpha < \omega_1\}$ such that every initial part $S_{\delta} = \{x_{\alpha} \mid \alpha \leq \delta\}$ is open in S (i.e. S is "right-separated"). We consider the subspace topology on S and shall find a subset of S which is not separable. Since S is regular, each x_{α} has an open neighborhood U_{α} with closure $U_{\alpha} \subset S_{\alpha}$. These countable closed sets generate an ideal *I*. By the dichotomy, there is an uncountable set $D \subset S$ which is either "inside" or "out" of *I*. If D is in, then every countable subset E of D is in I, which means that it is covered by a countable closed set, and hence E is not dense in D. If D is out of *I*, then D has a finite intersection with every set in *I*. So in particular the intersection of D with every U_{α} is finite. As S is a Hausdorff space, D is discrete (and therefore not separable).

3

Sac